

PEM Water Electrolysis: Insights in Different Technology Options

Tom Smolinka Cluster Brennstoffzelle BW: Electrolysis Workshop ZSW, Stuttgart, December 12th, 2023 www.ise.fraunhofer.de

The Fraunhofer Institute for Solar Energy Systems ISE

Performing research for the energy transition for over 40 years.

The Institute in Numbers

Institute Directors Prof. Dr. Hans-Martin Henning Prof. Dr. Andreas Bett

Employees ca. 1400

Budget 2022 (preliminary)Operation€107.0 millionInvestment€ 12.3 millionTotal€119.3 million

Founded in 1981

The Fraunhofer Institute for Solar Energy Systems ISE

Hydrogen and batteries are integral components of the energy transition!

The Fraunhofer Institute for Solar Energy Systems ISE

Research field: Electrochemical hydrogen production and hydrogen infrastructure

Characterisation of Materials and Components

- Electrochemical characterisation
- Investigation of life-time / accelerated stress tests
- Ex-situ analysis

Development of PEM Water Electrolysis Components

- CCM manufacturing
- New cell concepts
- Laboratory PEM stacks
- Control strategies

- Dynamic system modelling
 Technologies
 Technologies
- Development of system and plant concepts
- H2 yield assessment

Technology consulting

- Techno economic analysis /market survey
- Roll out H2 technologies
- Life cycle assessment

Outline of the Talk

- 1. Introduction to Fraunhofer
- 2. Current state of WE industry
- 3. PEM water electrolysis: Components & cells
- 4. PEM Water Electrolysis: Systems
- 5. Conclusion and summary

Current State of Water Electrolysis Industry

Different electrolysis technologies exist but technology readiness levels vary.

Processes that **will/can** play a commercial role by 2030.

Current State of Water Electrolysis Industry

Dramatic increase in manufacturing capacities is announced until 2030.

Market trends until mid 2020's

- Takeover of small technology companies by financially strong players (nearly) completed
- Extension of necessary production capacities and establishment of resilient supply chains
- Global additions reach small GW range with 2 GW in 2022 → 240 GW in 2030
- Realization of large-scale EL plants up to 100 MW with focus on AEL and PEMEL

European pain points

- Cost pressure from Chinese manufacturers
- Continuing delays to green hydrogen projects by policy hold-ups (unclear legal framework)

Source: Company filings, industry sources, BloombergNEF. Note: The values refer to year-end capacities.

BloombergNEF (2022-11): A Breakneck Growth Pivot Nears for Green Hydrogen, https://about.bnef.com/blog/a-breakneck-growth-pivot-nears-for-green-hydrogen/

Current State of Water Electrolysis Industry

Upscaling and commercialization of PEM electrolyzers is ongoing but not an easy way.

→ Exemplary naming of some manufacturers, not a complete overview!

Picture credits: NEL ASA, cummins Inc., elogen SAS, h-tec Systems GmbH, ITM Power Ltd., Siemens Energy AG

FHG-SK: ISE-PUBLIC

Proton exchange membrane water electrolysis (PEMWE/PEMEL)

Main cell components and state of the art materials

Cross section of a PEM electrolysis cell

- Membrane as solid electrolyte
 - Perfluorosulfonic acid (PFSA) ionomer
 - Typical thickness: 100 180 mm
- Electrodes for OER and HER
 - AN: (supported) Ir or IrOx: ~2.0 mg/cm²
 - CAT: supported Pt/C: ~ 0.5 1.0 mg/cm²
- Porous transport layers
 - Sintered Ti fibers/particles: 0.5 1.0 mm
 - Carbon paper (only at cathode)
- Bipolar plate (with flow field structures)
 - (Au or Pt coated) Ti sheet: 0.2 1.0 mm

Proton exchange membrane water electrolysis (PEMWE/PEMEL)

Main cell components and state of the art materials

Membrane electrode assembly (MEA) (© Fraunhofer ICT)

Different cell configurations with PTLs, spacers and flow fields (© Fraunhofer ISE)

- Membrane as solid electrolyte
 - Perfluorosulfonic acid (PFSA) ionomer
 - Typical thickness: 100 180 mm
- Electrodes for OER and HER
 - AN: (supported) Ir or IrOx: ~2.0 mg/cm²
 - CAT: supported Pt/C: ~ 0.5 1.0 mg/cm²
- Porous transport layers
 - Sintered Ti fibers/particles: 0.5 1.0 mm
 - Carbon paper (only at cathode)
- Bipolar plate (with flow field structures)
 - (Au or Pt coated) Ti sheet: 0.2 1.0 mm

Proton exchange membrane water electrolysis (PEMWE/PEMEL)

Main cell components and state of the art materials and performance

- Membrane as solid electrolyte
 - Perfluorosulfonic acid (PFSA) ionomer
 - Typical thickness: 100 180 mm
- Electrodes for OER and HER
 - AN: (supported) Ir or IrOx: ~2.0 mg/cm²
 - CAT: supported Pt/C: ~ 0.5 1.0 mg/cm²
- Porous transport layers
 - Sintered Ti fibers/particles: 0.5 1.0 mm
 - Carbon paper (only at cathode)
- Bipolar plate (with flow field structures)
 - (Au or Pt coated) Ti sheet: 0.2 1.0 mm

Polarization curve of different PTL setups measured with Fraunhofer ISE laboratory reference cell

Proton exchange membrane water electrolysis

Evolution of stack designs for membrane water electrolyzers

a) Laboratory style

■ 30 – 300 cm²

b) No milled plates

■ 100 – 600 cm²

c) Additional spacers

■ 300 – 1,000 cm²

d) Embossed/deep-dawn plates with channels

- 500 5,000 cm²
- Area specifications are only rough guide values

Reference: Fraunhofer ISE

Slide 12 2023-12-12 @ Fraunhofer ISE

FHG-SK: ISE-PUBLIC

BPP: Bipolar plate BoS Balance of stack MEA: Membrane electrode assembly PTL: Porous transport layer

Proton exchange membrane water electrolysis

Evolution of stack designs for PEM water electrolysis \rightarrow Examples

a) Laboratory style

30 – 300 cm²

b) No milled plates

■ 100 – 600 cm²

c) Additional spacers

■ 300 – 1,000 cm²

d) Embossed/deep-dawn plates with channels

- 500 5,000 cm²
- Area specifications are only rough guide values

© Proton OnSite (2012)

© Dana – REINZ-Dichtungs-GmbH (2017)

Proton exchange membrane water electrolysis

Modern cell and stack design is much more complex!

ElringKlinger AG / WO 2021/122164 A1 / 2021

- Dichtelement mit stoffschlüssiger Verbindung zur GDL (PTL) und einem Rahmenteil
- Silikon im Spritzguss
- Geschweißte bipolare Platte

- Dichtungen im Kraftschluss
 - Membrane gegen Dichtelemente
 - Dichtelemente gegen BPP

Basic system layout & main system components

- Stack as electrochemical reactor
- PEM electrolysis module
 - Circulation loop anode (fluidic and thermal management)
 - Gas water separators, demisters and control valves
 - Rectifier
- Subsystems
 - Water feed and purification
 - Recooling unit
 - AC connection
 - Hydrogen treatment

Basic system layout & main system components

Typical example of a small system

- H-TEC PEM electrolyzer ME450
- Containerized solution
- 1 MW nominal load with 9 stacks
- Hydrogen production: 450 kg/d

Picture credits: h-tec systems (2023), https://www.h-tec.com/en/products/detail/h-tec-pem-electrolyser-me450/me450/

Typical example of a small system

- NEL Hydrogen M series containerized
- Outdoor solution for single digit MW systems with up to 1 t/d
- 1. Combustible gas detector
- 2. Heat exchanger
- 3. Hydrogen gas dryer
- 4. Hydrogen phase separator
- 5. Oxygen phase separator
- 6. Cell stack 1.25 MW
- 7. DI water polish bed
- 8. Circulation pump
- 9. Control panel
- 10. Rectifier / 11. MV input / 12. Transformer
- 13. Thermal control system / 14. Chiller

Picture credits: Nel Hydrogen (2023), https://nelhydrogen.com/product/m-series-containerized/

Typical example of a medium-sized system

- H-TEC PEM Electrolyzer Modular Hydrogen Platform
- Indoor solution
- Combination of 10 MW blocks to multi-MW systems
- Numbering of stacks, here 4 arrays à 24 stacks

Picture credits: h-tec systems (2023), https://www.h-tec.com/en/products/detail/h-tec-pem-electrolyser-me450/me450/

Typical example of a medium-sized system

- NEL Hydrogen M series
- 20 MW indoor solution
- 2 arrays à 8 x 1.25 MW stacks
 - 1. Cell stacks
 - 2. Control room
 - 3. Circulation pumps
 - 4. Heat exchanger
 - 5. DI water polish bed
 - 6. Oxygen phase separator
 - 7. Hydrogen phase separator
 - 8. Transformer and rectifier

Picture credits: NEL Hydroegen (2023), https://nelhydrogen.com/product/m-series-3/

Typical example of a medium-sized system in reality

- ITM Power 10 MW PEMWE system
- Shell Refinery in Wesseling / DE
- European REFHYNE project

Picture credits: Refhyne (2020), https://www.refhyne.eu/construction-progressing-at-the-refhyne-site/

FHG-SK: ISE-PUBLIC

Overall efficiency

- Voltage efficiency can reach theoretically 100% at 0% load
- Voltage efficiency and Faraday efficiency result in cell/stack efficiency
- System efficiency also includes balance of plant and several load dependent efficiency curves
- Real behaviour depends on many parameters
- System can be optimized for a specific applications
- Numbers shown here are only an example (Fraunhofer model)
- Keep in mind: drifting of the efficiency during operation

Picture credits:

The efficiency for electrolysers depends on the system size.

Gigawatt Water Electrolysis Systems

Large-scale installations will be following up the numbering up approach.

- How can be achieved larger hydrogen production capacities?
 - Scale up cell area
 - Numbering up cells in a stack
 - Numbering up stacks in a system / plant

Artist impression of a state-of-the-art 1 GW green hydrogen plant based on alkaline technology

ISPT (2020): Gigawatt green hydrogen plant, state-of-the-art design and total installed capital costs. Report, Institute for Sustainable Process Technology, Amersfoort (The Netherlands) 2020

Gigawatt Water Electrolysis Systems

Large-scale installations will be following up the numbering up approach.

Alkaline electrolysis system

Modular design of a state-of-the-art 1 GW green hydrogen plant based on alkaline technology

ISPT (2020): Gigawatt green hydrogen plant, state-of-the-art design and total installed capital costs. Report, Institute for Sustainable Process Technology, Amersfoort (The Netherlands) 2020

Application determines

and partial load range

requirements for redundancy

© ISPT (2022)

Cost saving

Gigawatt Water Electrolysis Systems

Large-scale installations will be following up the numbering up approach.

- Cost saving
- Application determines requirements for redundancy and partial load range

Modular design of a state-of-the-art 1 GW green hydrogen plant based on PEM technology

ISPT (2020): Gigawatt green hydrogen plant, state-of-the-art design and total installed capital costs. Report, Institute for Sustainable Process Technology, Amersfoort (The Netherlands) 2020

PEM electrolysis system

Further reading

More insights can be found here:

https://www.now-gmbh.de/wpcontent/uploads/2020/09/indwedestudie_v04.1.pdf

Paperback ISBN: 9780128194249 eBook ISBN: 9780128194256

by Water Electrolysis

Edited by Tere Smolinka and Jürgen Garcho

Conclusion and Summary

Take home messages

Water electrolysis is on its way to becoming a GW industry and, in addition to the alkaline process, **PEM electrolysis in** particular will play an important role by 2030!

4.

All companies are currently massively expanding their manufacturing capacities and no technical showstopper is visible until 2030+ (materials, scale-up, lifetime, costs).

PEM electrolysis is currently undergoing considerable improvements at cell level. Despite considerable reduction in the amount of material used in a cell, very high performance values and efficiencies can be achieved.

A successful market ramp-up will only work with suitable boundary conditions (availability of RE and market framework incl. business models for green hydrogen). The impending PFAS ban in Europe would be a significant setback for PEMWE.

Thanks a lot for your kind attention!

Contact

Dr. Tom Smolinka Business Area Hydrogen Technologies tom.smolinka@ise.fraunhofer.de

www.ise.fraunhofer.de www.pem-electrolysis.de

Development Trends in PEM Water Electrolysis Main cell components and state of the art materials → next generation 2025+

Cross section of an advanced PEM electrolysis cell

- Membrane as solid electrolyte
 - Perfluorosulfonic acid (PFSA) ionomer -> PFAS ban
 - Typical thickness: $100 180 \ \mu m < 100 \ \mu m$
 - With recombination layer
- Electrodes for OER and HER
 - AN: supported Ir or IrOx: ~2.0 mg/cm² 0.4-1.0 mg/cm²
 - CAT: supported Pt/C: ~ 0.5-1.0 mg/cm² 0.1-0.5 mg/cm²
- Porous transport layers
 - Sintered Ti fibers/particles: 0.5 1.0 mm ~ 300 μ m
 - Carbon paper (only at cathode)
- Bipolar plate (with flow field structures)
 - = (Au or Pt coated) Ti sheet: 0.2 1.0 mm ~ 300 μ m
 - Highly integrated & mass-produced half-cell compounds

Basic system layout & main system components

- : Polytetrafluoroethylene as Teflon©
- StSt : Stainless steel

PTFE

Picture credits: Fraunhofer ISE (2014)

Cost structure analysis of stacks in alkaline and PEM water electrolysis

CATF study: Main results for state of the art and future stack designs

- Cost drivers AEL stacks
 - electrodes (anode/cathode)
 - bipolar plates (cell compartments)
- Cost drivers PEMEL stacks
 - membrane electrode assembly (CCM)
 - porous transport layer anode (Ti based)
- Prediction of future costs
 - Scale-up and technology progress results in a cost reduction of some 50 %
 - AEL stacks can also be produced more costeffectively in the future

Cost breakdowns of state of the art electrolysis stacks (2020) and future electrolysis stacks (2030) for AEL and PEMEL

Reference: CATF study

FHG-SK: ISE-PUBLIC

BPP: Bipolar plate BoS Balance of stack MEA: Membrane electrode assembly PTL: Porous transport layer

Backup slide

Cost structure analysis of stacks in alkaline and PEM water electrolysis

CATF study: Stack costs do not dominate the system costs alone.

- System costs are made up of many individual components such as stack, gas and water treatment, cooling systems and power electronics
 - Stack main cost driver
 - Rectifier and transformer second most expensive components
- Small systems significantly more expensive than larger ones
- AEL systems will also lead to lower system costs in the future
- Almost cost parity between AEL and PEMEL systems if hydrogen compression is taken into account

Backup slide

European Strategic Research and Innovation Agenda 2021 – 2027

- Target KPI values for PEM water electrolysis defined by Hydrogen Europe and HE Research
 - for Horizon Europe
 (9th EU Framework
 Program for Research
 and Innovation)
 - All KPIs should be achieved at the same time
- Technological development will be evolutionary, not disruptive

No.	KPI	Unit	SoA 2020		Target	s 2024	Targets 2030		
			AEL	PEMEL	AEL	PEMEL	AEL	PEMEL	
1	Electricity consumption @ nominal capacity	kWh/kg	50	55	49	52	48	48	
2	Canital cost	€/(kg/d)	1,250	2,100	1,000	1,550	800	1,000	
	Capital Cost	€/kW	600	900	480	700	400	500	
3	O&M cost	€/(kg/d)/y	50	41	43	30	35	21	
4	Hot idle ramp time	sec	60	2	30	1	10	1	
5	Cold start ramp time	sec	3,600	30	900	10	300	10	
6	Degradation	%/1,000h	0.12	0.19	0.11	0.15	0.10	0.12	
7	Current density	A/cm ²	0.6	2.2	0.7	2.4	1.0	3.0	
8	Use of critical raw materials as catalysts	mg/W	0.6	2.5	0.3	1.25	0.0	0.25	

Clean Hydrogen Joint Undertaking (25 February 2022): Strategic Research and Innovation Agenda 2021 – 2027 hhttps://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_en

European Strategic Research and Innovation Agenda 2021 – 2027

- Target KPI values for PEM water electrolysis defined by Hydrogen Europe and HE Research
 - for Horizon Europe (9th EU Framework Program for Research and Innovation)
 - All KPIs should be achieved at the same time
- Technological development will be evolutionary, not disruptive

No.	KPI	Unit	SoA	2020	Targe	ts 2024	Target	s 2030	
			AEL	PEMEL	AEL	PEMEL	AEL	PEMEL	
1	Electricity consumption @ nominal capacity	kWh/kg	50	55	10	10	18	48	
2	Capital cost	€/(kg/d) €/kW	1,250 600	2,100 900	1 480	700	400	1,000 500	
3	O&M cost	€/(kg/d)/y	50	41	43	30	35	21	
4	Hot idle ramp time	sec	60	2	30	1	10	1	
5	Cold start ramp time	sec	3,600	30	900	10	300	10	
6	Degradation	%/1,000h	0.12	0.19	0.11	0.15	0 10	0.12	
7	Current density	A/cm ²	0.6	2.2		10 yrs		3.0	
8	Use of critical raw materials as catalysts	mg/W	0.6	2.5	0.3	1.25	0.0	0.25	

Clean Hydrogen Joint Undertaking (25 February 2022): Strategic Research and Innovation Agenda 2021 – 2027 hhttps://www.clean-hydrogen.europa.eu/about-us/key-documents/strategic-research-and-innovation-agenda_en

Goals of the US American The Hydrogen and Fuel Cell Technologies Office

- Technical targets for LT water electrolysis according to the Multi-Year Research, Development, and Demonstration Plan
- All performance, durability, and capital cost targets must be met simultaneously
- Overall central goal of lowcost hydrogen production

• \$2/kg H2 by 2026 and

\$1/kg H2 by 2031

• Electricity \leq \$0.03/kWh

lo.	KPI	Unit	SoA	2022 Tar		s 2026	Ultimate	e Targets	
	System		AEL PEMEL		AEL	PEMEL	AEL	PEMEL	
Sy	Energy Efficiency @ nominal capacity	kWh/kg	55	55	52	51	48	46	
Sy	Capital cost	\$/kW	500	1,000	250	250	150	150	
Sy	H_2 production cost	\$/kg	> 2.00	> 3,00	2.00	2.00	1.00	1.00	
	Stack								
St	Cell performance	A/cm ² @ V	0.5 @ 1.9	2.0 @ 1.9	1.0 @ 1.8	3.0 @ 1.8	2.0 @ 1.7	3.0 @ 1.6	
St	Electrical efficiency	kWh/kg	51	51	48	48 48		43	
St	Av. degradation rate	%/1,000h	0.17	0.25	0.13	0.13	0.13	0.13	
St	Total PGM content (both electrodes)	mg/cm² (g/kW)		3.0 (0.8)		0.5 (0.1)		0.125 (0.03)	

Water Electrolyzer Technical Targets from the Hydrogen and Fuel Cell Technologies Office https://www.energy.gov/eere/fuelcells/hydrogen-production-related-links#targets

Goals of the US American The Hydrogen and Fuel Cell Technologies Office

- Technical targets for LT water electrolysis according to the Multi-Year Research, Development, and Demonstration Plan
- All performance, durability, and capital cost targets must be met simultaneously
- Overall central goal of lowcost hydrogen production
 - \$2/kg H2 by 2026 and
 - \$1/kg H2 by 2031
 - Electricity \leq \$0.03/kWh

lo.	KPI	Unit	SoA	2022	Target	s 2026	Ultimate	e Targets	
	System		AEL PEMEL		AEL	PEMEL	AEL	PEMEL	
5y	Energy Efficiency @ nominal capacity	kWh/kg	55	55	50	51 ~ 10 vrs	48	46	
5y	Capital cost	\$/kW	500	1,000	250	250	150	150	
5y	H_2 production cost	\$/kg	> 2.00	> 3,00	2.00	2.00	1.00	1.00	
	Stack								
St	Cell performance	A/cm ² @ V	0.5@1.9	2.0 @ 1.9	1.0@1.8	3.0@1.8	2.0@1.7	3.0 @ 1.6	
St	Electrical efficiency	kWh/kg	51	51	48	48	15	43	
St	Av. degradation rate	%/1,000h	0.17	0.25		~ 10 yrs	5	0.13	
St	Total PGM content (both electrodes)	mg/cm² (g/kW)		3.0 (0.8)		0.5 (0.1)		0.125 (0.03)	

Water Electrolyzer Technical Targets from the Hydrogen and Fuel Cell Technologies Office https://www.energy.gov/eere/fuelcells/hydrogen-production-related-links#targets

Comparison of the EU SRIA targets with US DOE goals: Who is more ambitious?

Ambition mapping	No.	КРІ	Unit	SoA 2022		Targets 2026		Ultimate Targets	
Europe is more ambitious		System		AEL	PEMEL	AEL	PEMEL	AEL	PEMEL
 Parity between FLL and LIS 	Sy	Energy Efficiency @ nominal capacity	kWh/kg	55	55	52	51	48	46
	Sy	Capital cost	\$/kW	500	1,000	250	250	150	150
	Sy	H_2 production cost	\$/kg	> 2.00	> 3,00	2.00	2.00	1.00	1.00
 US is more ambitious 		Stack							
	St	Cell performance	A/cm ² @ V	0.5 @ 1.9	2.0@1.9	1.0 @ 1.8	3.0 @ 1.8	2.0 @ 1.7	3.0@1.6
US is much more ambitious	St	Electrical efficiency	kWh/kg	51	51	48	48	45	43
	St Av. degradation rate		%/1,000h	0.17	0.25	0.13	0.13	0.13	0.13
	St	Total PGM content (both electrodes)	mg/cm² (g/kW)		3.0 (0.8)		0.5 (0.1)		0.125 (0.03)

Water Electrolyzer Technical Targets from the Hydrogen and Fuel Cell Technologies Office https://www.energy.gov/eere/fuelcells/hydrogen-production-related-links#targets

